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Abstract
In this paper, we propose a family of symplectic structure-preserving numerical
methods for the coupled Klein–Gordon–Schrödinger (KGS) system. The
Hamiltonian formulation is constructed for the KGS. We discretize the
Hamiltonian system in space first with a family of canonical difference
methods which convert an infinite-dimensional Hamiltonian system into a
finite-dimensional one. Next, we discretize the finite-dimensional system in
time by a midpoint rule which preserves the symplectic structure of the original
system. The conservation laws of the schemes are analyzed in succession,
including the charge conservation law and the residual of energy conservation
law, etc. We analyze the truncation errors and global errors of the numerical
solutions for the schemes to end the theoretical analysis. Extensive numerical
tests show the accordance between the theoretical and numerical results.

PACS numbers: 02.60.Jh, 45.20.Jj

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Rapid progress has been made in symplectic structure-preserving numerical methods for
Hamiltonian ODEs since they were systematically brought forward by Feng [1] in 1984. They
are more efficient than the traditional numerical schemes for long-term numerical simulations,
and nowadays, are applied to a number of practical problems arising in many fields of science
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and engineering, such as celestial mechanics, quantum physics, and statistical physics. See
[2–9] and references therein.

In this paper, we focus on the symplectic schemes for the standard coupled Klein–Gordon–
Schrödinger (KGS) system. The model describes the interaction between a conserved scalar
neutron field and a neutral meson field, and plays an important role in quantum physics.
In the last three decades many researchers have paid their attention to the model from
the partial differential equations aspect [12–17]. Moreover, many authors have studied its
exact solutions [18–20]. Nevertheless, to our knowledge, study of its numerical methods,
especially numerical simulations, is extremely limited. In [21, 22], Zhang et al presented
some energy-preserving difference schemes for it. In [23], Xiang exhibited a Fourier spectral
method for it. Unfortunately, none of them performed any numerical experiment, only
theoretically numerical analysis. As for numerical methods with numerical illustrations, we
established multisymplectic schemes for it [24, 25], and Hong et al estimated the errors for the
multisymplectic schemes [26], and Bao et al presented spectral splitting methods for it [27].

The standard coupled KGS system is the following mathematical model:{
iψt + 1

2ψxx + ψϕ = 0,

ϕtt − ϕxx + ϕ − |ψ |2 = 0,
(x, t) ∈ R × R

+, (1)

where i = √−1, the complex unknown function ψ(x, t) represents a scalar neutron field, and
the real unknown function ϕ(x, t) represents a scalar neutral meson field. We consider the
initial-boundary value problem for the KGS (1) by prescribing the conditions

ψ(x, 0) = ψ0(x), ϕ(x, 0) = ϕ0(x), ϕt (x, 0) = ϕ1(x), (2)

lim
|x|→∞

|ψ(x, t)| = 0, lim
|x|→∞

ϕ(x, t) = 0, (3)

where ψ0(x), ϕ0(x), ϕ1(x) are known smooth functions. The numerical methods which will
be presented in the paper can be extended to periodic boundary problems.

The initial-boundary value problem (1)–(3) at least admits the following two invariants.

(i) The charge is conserved, that is,

A(t) = ‖ψ(x, t)‖2 =
∫

R

|ψ(x, t)|2 dx =
∫

R

|ψ0(x)|2 dx = A(0). (4)

(ii) The energy or the Hamiltonian quantity is conserved, namely,

E(t) = E(0), (5)

where E(t) = ∫
R

[
1
2

(
ϕ2(x, t) + ϕ2

t (x, t) + ϕ2
x(x, t) + |ψx(x, t)|2)− |ψ(x, t)|2ϕ(x, t)

]
dx.

Furthermore, the KGS (1) can be cast into a Hamiltonian framework. In fact, let
ψ(x, t) = p(x, t) + iq(x, t), ϕt (x, t) = 2v(x, t), where p(x, t), q(x, t) are real functions,
then we get the infinite-dimensional Hamiltonian formulation

d

dt
z = J

δH(z)

δz
, (6)

where z = [q, v, p, ϕ]T , J = [ 0 J1

−J1 0

]
, J1 = [ 1

2 0
0 1

]
. The Hamiltonian function is

H(z) =
∫

R

[
ϕ(p2 + q2) − 1

2

(
ϕ2 + ϕ2

x + p2
x + q2

x

)− v2

]
dx.

2
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The paper is organized as follows. In section 2, we establish a family of symplectic
approximations for the KGS (1) which is discretized by the canonical difference method
in the spatial direction and the Euler midpoint rule in the temporal direction. It is discovered
that the schemes are charge preserving. Furthermore, the residual of energy is also analyzed
in the section. In section 3, we focus our discussion on the error analysis of the numerical
solutions of the schemes we construct, and prove that they converge to the exact solutions with
second-order accuracy in time and 2mth order in space. In section 4, we test the accuracy
and invariants of our methods for the KGS with solitary wave solution. The schemes are also
applied to simulate plane wave and various solitons of the KGS. Finally, some conclusions are
summarized from the theoretical discussion and numerical results.

2. Symplectic approximation for the KGS

We consider the determined problem (1)–(3) in the temporal-spatial domain [−L,L] ×
[0, T ] ⊂ R × R

+ and divide the domain into a uniform mesh {(xj , tn) | xj = −L + jh, tn =
nτ, j = 0, 1, 2, . . . , N; n = 0, 1, 2, . . . ,M}, where h = 2L

N
is the spatial mesh step size and

τ = T
M

is the temporal step length. The approximation of the function u(x, t) at the mesh
point (xj , tn) is denoted by un

j . Furthermore, the following notations are employed:

u
n+ 1

2
j = 1

2

(
un

j + un+1
j

)
, δtu

n+ 1
2

j = un+1
j − un

j

τ
,

and

〈un, vn〉 = h
∑

j

un
j v

n
j , ‖un‖2 = h

∑
j

un
ju

n
j , ‖un‖∞ = max

0�j�N

∣∣un
j

∣∣,
where un

j is the complex conjugate of un
j . For simplicity, we have written the sum

∑N
j=0 as∑

j in the last two sum.
To convert an infinite-dimensional Hamiltonian system (6) into a finite-dimensional one,

we first discretize it in the spatial direction. Approximating the second-order partial derivative
operator ∂2

∂x2 by B(2m) [3] at the nodes xj , it yields

B(2m) = ∇+∇−
m−1∑
j=0

(−1)jβj

(
h2∇+∇−

4

)j

, (7)

where βj = (j !)24j

(2j+1)!(j+1)
, and ∇+,∇− are the forward and backward difference quotient

operators, respectively. It is easy to verify that β0 = 1, β1 = 1
3 , β2 = 8

45 . Therefore,

the differential matrices corresponding to ∂2

∂x2 for homogeneous condition, for m = 1, 2, 3, are
(N − 1) × (N − 1) symmetric Toeplitz matrices whose first rows are given by

1

h2
[−2, 1, 0, . . . , 0],

1

12h2
[−30, 16,−1, 0, . . . , 0],

1

180h2
[−490, 270,−27, 2, 0, . . . , 0],

respectively. These matrices for m = 1, 2, 3 are denoted by B2, B4, B6, respectively.

Remark 1. The above matrices are suitable for the homogeneous boundary conditions. As
for the periodic boundary conditions, these matrices ought to be N × N circulant matrices,

3
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whose first rows for m = 1, 2, 3, are
1

h2
[−2, 1, 0, . . . , 0, 1],

1

12h2
[−30, 16,−1, 0, . . . , 0,−1, 16],

1

180h2
[−490, 270,−27, 2, 0, . . . , 0, 2,−27, 270],

respectively. We still denote these matrices as B2, B4, B6.

From the positive definiteness of −B2m, there exists a matrix G2m, such that

−B2m = GT
2mG2m.

Replacing ∂2

∂x2 in the infinite-dimensional Hamiltonian system (6) by B(2m), we obtain a
semi-discrete system whose accuracy in space is O(h2m),⎡

⎢⎢⎣
Qt

Vt

Pt

�t

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 0 IN 0
0 0 0 IN

−IN 0 0 0
0 −IN 0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

M1 0 0 0
0 M2 0 0
0 0 M3 0
0 0 0 M4

⎤
⎥⎥⎦
⎡
⎢⎢⎣

Q

V

P

�

⎤
⎥⎥⎦ , (8)

where IN is the N×N identity matrix, M1 = 1
2B2m+D1,M2 = −2IN ,M3 = 1

2B2m+D3,M4 =
1
2 (B2m − IN) + D4, with the diagonal matrices

D1 = D3 = diag(ϕ1, ϕ2, . . . , ϕN),D4 = 1

2
diag

(
p2

1 + q2
1

ϕ1
,
p2

2 + q2
2

ϕ2
, . . . ,

p2
N + q2

N

ϕN

)
.

And Z = [QT , V T , P T ,�T ]T ,Q = [q1(t), q2(t), . . . , qN(t)]T , P = [p1(t), p2(t), . . . ,

pN(t)]T , V = [v1(t), v2(t), . . . , vN(t)]T ,� = [ϕ1(t), ϕ2(t), . . . , ϕN(t)]T .
The semi-discretization (8) is a finite-dimensional Hamiltonian system because B2m is

symmetric [10], whose Hamiltonian function is

H(Z) = 1

4
(P T B2mP + QT B2mQ) +

1

4
�T (B2m − IN)� + V T V +

1

2

N∑
j=1

ϕj

(
p2

j + q2
j

)
.

We discretize (8) in time further with the midpoint rule and arrive at a symplectic integrator

Qn+1 − Qn

τ
= 1

2
B2mP n+ 1

2 + �n+ 1
2 · P n+ 1

2 , (9)

V n+1 − V n

τ
= 1

2
(B2m − IN)�n+ 1

2 +
1

2
�n+ 1

2 · [(P n+ 1
2
) ·2 +

(
Qn+ 1

2
) ·2 ], (10)

P n+1 − P n

τ
= −

[
1

2
B2mQn+ 1

2 + �n+ 1
2 · Qn+ 1

2

]
, (11)

�n+1 − �n

τ
= 2V n+ 1

2 , (12)

where ‘·’ is the componentwise product between vectors, P · Q = [p1q1, p2q2, . . . , pNqN ]T ,
for example.

It follows from (9)–(12) that

i
�n+1 − �n

τ
+

1

2
B2m�n+ 1

2 = −�n+ 1
2 · �n+ 1

2 , (13)

�n+1 − 2�n + �n−1

τ 2
− 1

2
(B2m − IN)

(
�n+ 1

2 + �n− 1
2
) = 1

2

(∣∣�n+ 1
2
∣∣ ·2 +

∣∣�n− 1
2
∣∣ ·2 ), (14)

4
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where �n = P n + iQn = (
pn

1 , pn
2 , . . . , pn

N

)T
+ i
(
qn

1 , qn
2 , . . . , qn

N

)T = (
ψn

1 , ψn
2 , . . . , ψn

N

)T
,

etc.

Theorem 1. The symplectic scheme (13)–(14) conserves the charge exactly, i.e.,

An+1 = ‖�n+1‖2 = h
∑

j

∣∣ψn+1
j

∣∣2 = h
∑

j

∣∣ψ0j

∣∣2 = ‖�0‖2 = A0. (15)

Thus the scheme is stable with respect to the initial value.

Proof. Taking the complex inner product of (13) with �n+ 1
2 , we have

i

2τ
〈�n+1 − �n,�n+1 + �n〉 +

1

2

〈
B2m�n+ 1

2 , �n+ 1
2
〉
+
〈
�n+ 1

2 · �n+ 1
2 , �n+ 1

2
〉 = 0. (16)

The second term in the left side of equality (16) is real because of the symmetry of B2m, and
the third term is also real. The rest is

i

2τ
(‖�n+1‖2 − ‖�n‖2 + 〈�n+1, �n〉 − 〈�n,�n+1〉) = i

2τ
(An+1 − An) − 1

τ
Im〈�n+1, �n〉,

where ‘Im’ stands for the imaginary part.
Therefore, the imaginary part of (16) is

i

2τ
(An+1 − An) = 0, (17)

which means

An+1 = An.

We can get the conclusion (15) by induction. This completes the proof. �

Remark 2. We have applied the homogeneous boundary conditions (3) to prove the above
theorem. The conclusions to which we arrive are also true for periodic boundary conditions
and can be proved almost in the same way.

It is obvious that theorem 1 is a discrete version of the charge conservation law (4), as a
quadratic invariant, which plays a very important role in quantum physics.

The symplectic approximation (13)–(14) cannot conserve the total energy (5) exactly
because of the nonlinearity of the KGS (1). The following result provides the energy residual.

Theorem 2. The total residual of energy of the symplectic approximation (13)–(14) is

Resn+ 1
2 = En+ 1

2 − En− 1
2

τ
= 1

τ
h
∑

j

∣∣ψn+ 1
2

j − ψ
n− 1

2
j

∣∣2(ϕn+ 1
2

j − ϕ
n− 1

2
j

)
, (18)

where En+ 1
2 = ∥∥δt�

n+ 1
2

∥∥2
+
∥∥�n+ 1

2

∥∥2
+
∥∥G2m�n+ 1

2

∥∥2
+
∥∥G2m�n+ 1

2

∥∥2 − 2h
∑

j ϕ
n+ 1

2
j

∣∣ψn+ 1
2

j

∣∣2,
which is a discrete version of energy expression defined in (5).

Proof. The equality (13) can be written as

i
(
δt�

n+ 1
2 + δt�

n− 1
2
)

+
1

2
B2m

(
�n+ 1

2 + �n− 1
2
)

+
(
�n+ 1

2 · �n+ 1
2 + �n− 1

2 · �n− 1
2
) = 0. (19)

5
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Computing the inner product of (19) with δt�
n+ 1

2 + δt�
n− 1

2 = �n+1−�n−1

τ
= 2

τ

(
�n+ 1

2 − �n− 1
2
)
,

we have
i

τ 2
‖�n+1 − �n−1‖2 +

1

τ

〈
B2m

(
�n+ 1

2 + �n− 1
2
)
, �n+ 1

2 − �n− 1
2
〉

+
2

τ

〈
�n+ 1

2 · �n+ 1
2 + �n− 1

2 · �n− 1
2 , �n+ 1

2 − �n− 1
2
〉

= i

τ 2
‖�n+1 − �n−1‖2 +

1

τ

[〈
B2m�n+ 1

2 , �n+ 1
2
〉− 〈B2m�n− 1

2 , �n− 1
2
〉]

+
2

τ
h
∑

j

(
ϕ

n+ 1
2

j

∣∣ψn+ 1
2

j

∣∣2 − ϕ
n− 1

2
j

∣∣ψn− 1
2

j

∣∣2)

+
2

τ
h
∑

j

(
ϕ

n− 1
2

j ψ
n− 1

2
j ψ

n+ 1
2

j − ϕ
n+ 1

2
j ψ

n+ 1
2

j ψ
n− 1

2
j

)
= 0.

The first and the second terms of the above equality are pure imaginary and real functions,
respectively. Therefore, its real part is

1

τ

⎡
⎣
⎛
⎝∥∥G2m�n+ 1

2
∥∥2

+ 2h
∑

j

ϕ
n+ 1

2
j

∣∣ψn+ 1
2

j

∣∣2
⎞
⎠−

⎛
⎝∥∥G2m�n− 1

2
∥∥2

+ 2h
∑

j

ϕ
n− 1

2
j

∣∣ψn− 1
2

j

∣∣2
⎞
⎠
⎤
⎦

= − 2

τ
R

⎧⎨
⎩h
∑

j

(
ϕ

n− 1
2

j ψ
n− 1

2
j ψ

n+ 1
2

j − ϕ
n+ 1

2
j ψ

n+ 1
2

j ψ
n− 1

2
j

)⎫⎬⎭ , (20)

where ‘R’ stands for the real part. Recall that we have employed the fact〈
B2m�n+ 1

2 , �n+ 1
2
〉 = ∥∥G2m�n+ 1

2
∥∥2

.

Let B2m − IN = A2m, then A2m is symmetric for the symmetry of B2m and IN .
Taking the inner product of (14) with δt�

n+ 1
2 + δt�

n− 1
2 = �n+1−�n−1

τ
= 2

τ

(
�n+ 1

2 − �n− 1
2
)
,

it yields

1

τ

{〈
δt�

n+ 1
2 − δt�

n− 1
2 , δt�

n+ 1
2 + δt�

n− 1
2
〉− 〈A2m

(
�n+ 1

2 + �n− 1
2
)
,�n+ 1

2 − �n− 1
2
〉

−h
∑

j

(∣∣ψn+ 1
2

j

∣∣2 +
∣∣ψn− 1

2
j

∣∣2)(ϕn+ 1
2

j − ϕ
n− 1

2
j

)}

= 1

τ

{(∥∥δt�
n+ 1

2
∥∥2

+
〈−A2m�n+ 1

2 ,�n+ 1
2
〉)− (∥∥δt�

n− 1
2
∥∥2

+
〈−A2m�n− 1

2 ,�n− 1
2
〉)

−h
∑

j

(∣∣ψn+ 1
2

j

∣∣2 +
∣∣ψn− 1

2
j

∣∣2)(ϕn+ 1
2

j − ϕ
n− 1

2
j

)}

= 0.

With −A2m = IN − B2m, it derives that
〈−A2m�n+ 1

2 ,�n+ 1
2
〉 = ∥∥G2m�n+ 1

2

∥∥2
+
∥∥�n+ 1

2

∥∥2
and〈−A2m�n− 1

2 ,�n− 1
2
〉 = ∥∥G2m�n− 1

2

∥∥2
+
∥∥�n− 1

2

∥∥2
. From the above analysis, we can further

deduce
1

τ

{(∥∥δt�
n+ 1

2
∥∥2

+
∥∥�n+ 1

2
∥∥2

+
∥∥G2m�n+ 1

2
∥∥2)− (∥∥δt�

n− 1
2
∥∥2

+
∥∥�n− 1

2
∥∥2

+
∥∥G2m�n− 1

2
∥∥2)}

= 1

τ
h
∑

j

(∣∣ψn+ 1
2

j

∣∣2 +
∣∣ψn− 1

2
j

∣∣2)(ϕn+ 1
2

j − ϕ
n− 1

2
j

)
. (21)

6
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It follows that (20) and (21) yield

En+ 1
2 − En− 1

2

τ
= 1

τ
h
∑

j

{(∣∣ψn+ 1
2

j

∣∣2 +
∣∣ψn− 1

2
j

∣∣2)(ϕn+ 1
2

j − ϕ
n− 1

2
j

)

+ 2R
(
ϕ

n− 1
2

j ψ
n− 1

2
j ψ

n+ 1
2

j − ϕ
n+ 1

2
j ψ

n+ 1
2

j ψ
n− 1

2
j

)}
= 1

τ
h
∑

j

{(∣∣ψn+ 1
2

j

∣∣2 +
∣∣ψn− 1

2
j

∣∣2)(ϕn+ 1
2

j − ϕ
n− 1

2
j

)
+
(
ϕ

n− 1
2

j ψ
n− 1

2
j ψ

n+ 1
2

j

− ϕ
n+ 1

2
j ψ

n+ 1
2

j ψ
n− 1

2
j + ϕ

n− 1
2

j ψ
n− 1

2
j ψ

n+ 1
2

j − ϕ
n+ 1

2
j ψ

n+ 1
2

j ψ
n− 1

2
j

)}
= 1

τ
h
∑

j

{(
ψ

n+ 1
2

j ψ
n+ 1

2
j + ψ

n− 1
2

j ψ
n− 1

2
j

)(
ϕ

n+ 1
2

j − ϕ
n− 1

2
j

)

− (ψn− 1
2

j ψ
n+ 1

2
j + ψ

n+ 1
2

j ψ
n− 1

2
j

)(
ϕ

n+ 1
2

j − ϕ
n− 1

2
j

)}
= 1

τ
h
∑

j

∣∣ψn+ 1
2

j − ψ
n− 1

2
j

∣∣2(ϕn+ 1
2

j − ϕ
n− 1

2
j

)
.

This finishes the proof. �

3. Error estimations for the symplectic approximation

In what follows, we further discuss the numerical properties of the symplectic scheme (13)–
(14), including its convergence, truncation errors and stability, etc. These properties are the
most important signs for a numerical method.

We denote the truncation errors of the symplectic approximation (13)–(14) by

Rn = iδt�
(·, t

n+
1
2

)
+ 1

2B2m�
(·, t

n+
1
2

)
+ �
(·, t

n+
1
2

) · �
(·, t

n+
1
2

)
, (22)

Sn = δ2
t �(·, tn) − 1

2 (B2m − IN)
(
�
(·, t

n+
1
2

)
+ �
(·, t

n− 1
2

))
− 1

2

(∣∣�(·, t
n+

1
2

)∣∣ ·2 +
∣∣�(·, t

n− 1
2

)∣∣ ·2 ), (23)

where �(·, tn) = (ψ(x1, tn), ψ(x2, tn), . . . , ψ(xN, tn))
T , etc.

We can easily get the following truncation error by Taylor expansion.

Theorem 3. The truncation errors of the symplectic scheme (13)–(14) is O(τ 2 + h2m).

C is a general non-negative constant in the following. Note that it may be different at
different places.

Assume that the global errors of the numerical solutions ψn
j , ϕn

j at (xj , tn) are

en
j = ψ(xj , tn) − ψn

j , ϒn
j = ϕ(xj , tn) − ϕn

j ,

then we have the following error estimating lemma.

Lemma 1. The symplectic scheme (13)–(14) satisfies the error estimation

max
{‖eM‖2,

∥∥ϒM+ 1
2
∥∥2

,
∥∥δtϒ

M+ 1
2
∥∥2

,
∥∥G2mϒM+ 1

2
∥∥2} �

(
W 0 + τ

M∑
k=1

Ak

)
e4CMτ , (24)

provided that τ is sufficiently small, such that τ < 1
4C

, where Wn = ‖en+1‖2 + ‖en‖2 +∥∥ϒn+ 1
2

∥∥2
+
∥∥δtϒ

n+ 1
2

∥∥2
+
∥∥G2mϒn+ 1

2

∥∥2
, Ak = ‖Rk‖2 + ‖Rk−1‖2 + ‖Sk‖2.
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Proof. It is true from theorem 1 that∣∣ψn
j

∣∣ � C, for any j, n.

Furthermore, for the bounded solutions of the KGS (1), we have

|ψ(xj , tn)| � C, for any j, n.

Subtracting (13) from (22), it yields

Rn = iδt e
n+ 1

2 + 1
2B2men+ 1

2 + �
(·, tn+ 1

2

) · �
(·, tn+ 1

2

)− �n+ 1
2 · �n+ 1

2 . (25)

Taking the inner product of (25) with 2en+ 1
2 and taking the imaginary part, one has

1

τ
(‖en+1‖2 − ‖en‖2) = 2I

〈
Rn, en+ 1

2
〉− 2I

〈
�
(·, tn+ 1

2

) · ϒn+ 1
2 , en+ 1

2
〉

� ‖Rn‖2 +
∥∥en+ 1

2
∥∥2

+ C
∥∥en+ 1

2
∥∥2

+ C
∥∥ϒn+ 1

2
∥∥2

� ‖Rn‖2 +
1

2
(1 + C)(‖en+1‖2 + ‖en‖2) + C

∥∥ϒn+ 1
2
∥∥2

. (26)

On the other hand, subtracting (14) from (23), one derives

Sn = 1

τ

(
δtϒ

n+ 1
2 − δtϒ

n− 1
2
)− 1

2
B2m

(
ϒn+ 1

2 + ϒn− 1
2
)

+
1

2

(
ϒn+ 1

2 + ϒn− 1
2
)

−1

2

(∣∣�(·, tn+ 1
2

)∣∣ ·2 +
∣∣�(·, tn− 1

2

)∣∣ ·2 −∣∣�n+ 1
2
∣∣ ·2 −∣∣�n− 1

2
∣∣ ·2 ).

Taking the inner product of the above equality with δtϒ
n+ 1

2 + δtϒ
n− 1

2 , we have
1

τ

[(∥∥δtϒ
n+ 1

2
∥∥2

+
∥∥ϒn+ 1

2
∥∥2

+
∥∥G2mϒn+ 1

2
∥∥2)− (∥∥δtϒ

n− 1
2
∥∥2

+
∥∥ϒn− 1

2
∥∥2

+
∥∥G2mϒn− 1

2
∥∥2)]

= 〈Sn, δtϒ
n+ 1

2 + δtϒ
n− 1

2
〉
+

1

2

〈∣∣�(·, tn+ 1
2

)∣∣ ·2 +
∣∣�(·, tn− 1

2

)∣∣ ·2
− ∣∣�n+ 1

2
∣∣ ·2 −∣∣�n− 1

2
∣∣·2, δtϒ

n+ 1
2 + δtϒ

n− 1
2
〉
. (27)

Using Young’s Inequality ab � 1
4a2 + b2 � 1

2a2 + b2, we have〈
Sn, δtϒ

n+ 1
2 + δtϒ

n− 1
2
〉
� ‖Sn‖2 +

∥∥δtϒ
n+ 1

2
∥∥2

+
∥∥δtϒ

n− 1
2
∥∥2

. (28)

Moreover, it derives that
1

2

〈∣∣�(·, tn+ 1
2

)∣∣ ·2 +
∣∣�(·, tn− 1

2

)∣∣ ·2 −∣∣�n+ 1
2
∣∣ ·2 −∣∣�n− 1

2
∣∣·2, δtϒ

n+ 1
2 + δtϒ

n− 1
2
〉

= 1

2

〈
�
(·, tn+ 1

2

)
en+ 1

2 + �
(·, tn− 1

2

)
en− 1

2 + �n+ 1
2 en+ 1

2

+ �n− 1
2 en− 1

2 , δtϒ
n+ 1

2 x + δtϒ
n− 1

2
〉

� C
(∥∥δtϒ

n+ 1
2
∥∥2

+
∥∥δtϒ

n− 1
2
∥∥2)

+
1

2
C(‖en+1‖2 + 2‖en‖2 + ‖en−1‖2). (29)

It yields from (26) to (29) that
1

τ
(Wn − Wn−1) � ‖Rn‖2 + ‖Rn−1‖2 + ‖Sn‖2 + C

(∥∥ϒn+ 1
2
∥∥2

+
∥∥ϒn− 1

2
∥∥2)

+ (1 + C)
(∥∥δtϒ

n+ 1
2
∥∥2

+
∥∥δtϒ

n− 1
2
∥∥2)

+
1 + 3C

4
(‖en+1‖2 + 2‖en‖2 + ‖en−1‖2)

� ‖Rn‖2 + ‖Rn−1‖2 + ‖Sn‖2 + C
(∥∥δtϒ

n+ 1
2
∥∥2

+
∥∥δtϒ

n− 1
2
∥∥2

+
∥∥ϒn+ 1

2
∥∥2

+
∥∥ϒn− 1

2
∥∥2

+ ‖en+1‖2 + 2‖en‖2 + ‖en−1‖2
)

� An + C(Wn + Wn−1).
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Hence, it draws from discrete Gronwall inequality [28] and the above inequality that

WM �
(

W 0 + τ

M∑
k=1

Ak

)
e4CMτ , (30)

holds, where τ is sufficiently small, such that τ < 1
4C

.
The estimation (24) holds recalling the definition of Wn. The proof is completed. �

We would like to note that the estimates are bounded by the initial values and truncation
errors of the numerical methods.

Theorem 4. The global numerical errors of the symplectic approximation (13)–(14) of KGS
satisfies

‖eM‖ � O(τ 2 + h2m), ‖ϒM‖∞ � O(τ 2 + h2m). (31)

Proof. From

‖e0‖2 = ‖ϒ0‖2 = 0, ‖e1‖2 = O(τ 2 + h2m)2, ‖ϒ1‖2 = O(τ 2 + h2m)2,

‖Rn‖2 � O(τ 2 + h2m)2, ‖Sn‖2 � O(τ 2 + h2m)2,

we have

W 0 = O(τ 2 + h2m)2.

It draws from theorem 3 that

Ak = O(τ 2 + h2m)2.

Therefore,

WM = ‖eM‖2 + ‖eM−1‖2 +
∥∥ϒM− 1

2
∥∥2

+
∥∥δtϒ

M− 1
2
∥∥2

+
∥∥G2mϒM− 1

2
∥∥2

� CO(τ 2 + h2m)2.

Moreover, it follows from lemma 1 that

‖eM‖ � O(τ 2 + h2m),
∥∥ϒM− 1

2
∥∥ � O(τ 2 + h2m),

∥∥G2mϒM− 1
2
∥∥ � O(τ 2 + h2m).

From the discrete Sobolev inequality, one discovers that

‖ϒM‖∞ � O(τ 2 + h2m).

This completes the proof. �

Similarly, we can prove that the symplectic approximation (13)–(14) is stable.

4. Numerical experiments

To illustrate the numerical performance of the symplectic approximation (13)–(14), we present
some numerical experiments.

The KGS (1) admits the following analytic solitary wave solution [19]:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ψ(x − x0, t, v) = 3
√

2

4
√

1 − v2
sech2 1

2
√

1 − v2
(x − vt − x0)× exp

(
i

(
vx +

1 − v2 + v4

2(1 − v2)
t

))
,

ϕ(x − x0, t, v) = 3

4(1 − v2)
sech2 1

2
√

1 − v2
(x − vt − x0),

(32)

where |v| < 1 is the propagating velocity of the solitary wave, and x0 is the initial phase.

9



J. Phys. A: Math. Theor. 41 (2008) 255207 L Kong et al

Table 1. Spatial accuracy for m = 1, τ = 0.000 04.

Error|ψ | Orderψ Errorϕ Orderϕ

h L∞ L2 L∞ L2 L∞ L2 L∞ L2

0.5 4.650 × 10−1 1.529 × 10−2 – – 2.311 × 10−1 1.123 × 10−3 – –
0.25 1.143 × 10−1 2.643 × 10−3 2.02 2.53 5.504 × 10−2 1.205 × 10−3 2.07 2.26
0.125 2.839 × 10−2 4.636 × 10−4 2.00 2.51 1.373 × 10−2 2.105 × 10−4 2.00 2.51
0.0625 7.080 × 10−3 8.177 × 10−5 2.00 2.50 3.428 × 10−3 3.710 × 10−5 2.00 2.50

Table 2. Spatial accuracy for m = 2, τ = 0.000 04.

Error|ψ | Orderψ Errorϕ Orderϕ

h L∞ L2 L∞ L2 L∞ L2 L∞ L2

1 6.697 × 10−1 3.127 × 10−2 – – 5.048 × 10−1 2.339 × 10−2 – –
0.5 4.219 × 10−2 1.383 × 10−3 3.99 4.49 2.093 × 10−2 6.376 × 10−3 3.91 4.44
0.25 2.786 × 10−3 6.406 × 10−5 3.96 4.46 1.388 × 10−3 2.934 × 10−5 4.25 4.81
0.125 1.765 × 10−4 2.873 × 10−6 3.98 4.47 8.825 × 10−5 1.316 × 10−6 3.98 4.47

Table 3. Spatial accuracy for m = 3, τ = 0.000 04.

Error|ψ | Orderψ Errorϕ Orderϕ

h L∞ L2 L∞ L2 L∞ L2 L∞ L2

1 3.307 × 10−1 1.568 × 10−2 – – 2.630 × 10−1 1.148 × 10−2 – –
0.5 6.575 × 10−3 2.102 × 10−4 5.65 6.22 3.182 × 10−3 9.445 × 10−5 6.36 6.22
0.25 1.203 × 10−4 2.698 × 10−6 5.77 6.28 5.820 × 10−5 1.206 × 10−6 5.77 6.29
0.125 1.668 × 10−6 2.633 × 10−8 6.17 6.67 9.378 × 10−7 1.359 × 10−8 5.95 6.47

4.1. Accuracy tests

In order to calculate the convergence ratio in space, we utilize the formulation

order ≈ ln(‖error(h2)‖α/‖error(h1)‖α)

ln(h2/h1)
, (33)

where error(hk) = u(jhk, tn) − un
j indicates that the error is brought about by the spatial

discretization with the step size hk , and α = 2 or α = ∞. The calculating formula of
convergence ratio in time has a similar formation to formula (33).

For convenience, we naturally take the initial conditions

ψ0(x) = ψ(x − x0, 0, v), ϕ0(x) = ϕ(x − x0, 0, v), ϕ1(x) = ϕt (x − x0, t, v)|t=0,

that is, they are obtained from the exact solution (32) as t = 0.
We take velocity v = 0.5 and initial phase x0 = −5 in the subsection.
First, we test the spatial accuracy. We let the temporal step size τ be plenarily small, e.g.,

τ = 0.000 04, such that the discrete error from temporal discretization is negligible compared
to that from space. We choose the spatial interval [−20, 20], and compute the problem by
symplectic approximation (13)–(14) with m = 1, 2, 3, up to t = 20. The errors, orders and
spatial mesh sizes for m = 1, 2, 3 are listed in tables 1–3, respectively.

10
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Table 4. Temporal accuracy for m = 1, h = 0.031 25.

Error|ψ | Orderψ Errorϕ Orderϕ

h L∞ L2 L∞ L2 L∞ L2 L∞ L2

0.16 6.782 × 10−2 4.583 × 10−4 – – 2.452 × 10−3 1.492 × 10−5 – –
0.08 1.582 × 10−2 1.067 × 10−4 2.09 2.10 6.041 × 10−4 6.041 × 10−6 2.02 1.95

Table 5. Temporal accuracy for m = 2, h = 0.125.

Error|ψ | Orderψ Errorϕ Orderϕ

h L∞ L2 L∞ L2 L∞ L2 L∞ L2

0.04 4.394 × 10−3 4.199 × 10−5 – – 1.979 × 10−4 1.706 × 10−6 – –
0.02 1.091 × 10−3 1.042 × 10−5 2.00 2.00 4.590 × 10−5 3.932 × 10−7 2.10 2.11
0.01 2.648 × 10−4 2.528 × 10−6 2.04 2.04 7.961 × 10−6 7.154 × 10−8 2.52 2.45

Table 6. Temporal accuracy for m = 3, h = 0.125.

Error|ψ | Orderψ Errorϕ Orderϕ

h L∞ L2 L∞ L2 L∞ L2 L∞ L2

0.04 4.403 × 10−3 5.952 × 10−5 – – 2.016 × 10−4 2.468 × 10−6 – –
0.02 1.100 × 10−3 1.487 × 10−5 2.00 2.00 4.986 × 10−5 6.094 × 10−7 2.01 2.01
0.01 2.738 × 10−4 3.700 × 10−6 2.00 2.00 1.191 × 10−5 1.443 × 10−7 2.06 2.07

Next, we test the temporal accuracy. In order to do so, we make the spatial mesh size
sufficiently small, such that the discrete error from spatial discretization is negligible compared
to that from time. Choosing h = 0.031 25 for m = 1, and h = 0.125 for m = 2, 3, we solve
the problem with the approximation (13)–(14) till t = 20 on the spatial domain [−20, 20].
Tables 4–6 list the relationship among errors, orders and temporal step sizes for m = 1, 2, 3,
respectively.

From tables 1–6, we can draw the following observations: approximation (13)–(14) are
of 2mth order accuracy in space, and of second-order accuracy in time.

4.2. Conservation law test and single soliton simulation

In the subsection, we examine the charge conservation law and residual of energy, as well as
single soliton simulated by the symplectic approximation (13)–(14).

We choose the spatial interval [−40, 40], and velocity v = 0.5, as well as initial
phase x0 = −25. The problem is simulated by the symplectic approximation (13)–(14)
with m = 1, 2, 3 under different mesh divisions till t = 100. The mesh lengths are
τ1 = 0.2, h1 = 0.5; τ2 = 0.1, h2 = 0.25. The error of charge and residual of energy
are presented in figures 1 and 2, respectively, and figure 3 shows the soliton shapes of the
neutron field |ψ(x, t)| and neutral field ϕ(x, t) with the mesh division τ2 = 0.1, h2 = 0.25 at
different time stages. Judged from figures 1–3, the error of charge is within the roundoff error.
Although the energy is not conserved, its residual is very small during a long time, moreover,
takes on quasi-periodic changes. Furthermore, soliton shapes are preserved very well during
a long time in that the numerical solution and the exact solution are almost superposition.
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Figure 1. Error of charge: the first row: m = 1; the second row: m = 2; the third row: m = 3;
the first line: τ = 0.2, h = 0.5; the second line: τ = 0.1, h = 0.25.

Remark 3. The problems including the above and the following problems, can be simulated
over much longer time interval than what they have done, as long as the spatial domain is large
enough. However, we cannot simulate them too long for the limitation of the length of spatial
domains because of the size of memory.
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Figure 2. Residuals of energy: the first row: m = 1; the second row: m = 2; the third row:
m = 3; the first line: τ = 0.2, h = 0.5; the second line: τ = 0.1, h = 0.25.

4.3. Plane-wave solution

In the subsection, we consider the plane-wave solution of the KGS with periodic boundary
condition in the spatial interval [0,

√
2π ], that is,

ψ(0, t) = ψ(
√

2π, t), ϕ(0, t) = ϕ(
√

2π, t). (34)
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Figure 3. Soliton shape at different time: left, |ψ(x, t)|; right, ϕ(x, t).
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Figure 4. Plane-wave solution at different time of the real part of ψ(x, t).

The initial conditions are taken as

ψ0(x) = ei7
√

2x, ϕ0(x) = 1, ϕ1(x) = 0. (35)

Under the above initial-boundary conditions, the problem (1), (34), (35) admits the theoretical
plane-wave solution{

ψ(x, t) = ei(7
√

2x−48t),

ϕ(x, t) = 1.
(36)

To numerically simulate the problem, there is a little difference in dealing with the boundary
conditions from the other problems in the section. The matrices B2m should be the circulant
matrices mentioned in section 2. We solve the problem by the symplectic approximation
(13)–(14) with m = 2 under mesh step size h =

√
2

80 π, τ = 0.001 till t = 15. Figures 4, 5 and
6 compare the numerical results with the exact solution at different time stages. From these
figures, we can see that the symplectic approximation (13)–(14) really simulates the original
plane-wave solution from the beginning to the end.
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Figure 5. Plane-wave solution at different time of the imaginary part of ψ(x, t).

0 2 4
0.9

0.95

1

1.05

1.1

x

Φ

0 2 4
0.9

0.95

1

1.05

1.1

x

Φ

0 2 4
0.9

0.95

1

1.05

1.1

x

Φ

0 2 4
0.9

0.95

1

1.05

1.1

x

Φ

t=0 t=5

t=10 t=15

Figure 6. Plane-wave solution at different time of ϕ(x, t).

In the following subsections, we turn our attention to the collision between two solitons,
including symmetric and asymmetric soliton–soliton collision. For simplicity, we take the
corresponding initial values as⎧⎨

⎩
ψ(x) = ψ(x − p1, 0, v1) + ψ(x − p2, 0, v2),

ϕ(x) = ϕ(x − p1, 0, v1) + ϕ(x − p2, 0, v2),

ϕ1(x) = ϕt (x − p1, 0, v1) + ϕt (x − p2, 0, v2),

(37)

where v1, p1 and v2, p2 are velocities and initial phases of the first and the second solitons,
respectively, and ψ(x, t, v) and ϕ(x, t, v) are the exact solution (32).

4.4. Symmetric soliton–soliton collision

In what follows, we consider symmetric soliton–soliton collision, which can often be observed
in quantum mechanics and fluid dynamics.

15



J. Phys. A: Math. Theor. 41 (2008) 255207 L Kong et al

0
0.5
1
1.5
2
2.5

|ψ
|

-40 -20 0 20 40
x

0

10

20

30

40

t

0

2

4

φ

-40 -20 0 20 40
x

0

10

20

30

40

t

Figure 7. The symmetric collisions solitons: left, ψ(x, t); right, ϕ(x, t).
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Figure 10. The asymmetric collisions solitons: neutral field ϕ(x, t).

We choose velocities v1 = 0.7, v2 = −0.7 and initial phases p1 = −15, p2 = 15. The
solution corresponding to the case is two solitons with the same velocities but in opposite
directions and symmetrically distributing around the origin. The solitons are said to be
symmetric solitons. We apply approximation (13)–(14) with m = 2 to solve the problem in
the spatial interval [−40, 40], as far as t = 40 under mesh division τ = 0.02, h = 0.2. The
evolution of the neutron field |ψ(x, t)| and neutral field ϕ(x, t) with temporal development
are figured in figure 7. And the relationship between the error of charge and time is presented
on the left side of figure 8. We can find that the two solitons keep their own shapes and
velocities unchanged before collision, while result in fusion, and are accompanied by a series
of emission of waves after interaction, and some new soliton-like waves are produced which
are symmetrically distributed. Furthermore, the error of charge is within the roundoff error.

4.5. Asymmetric soliton–soliton collision

In the subsection, we go on considering the colliding phenomena between two head-on solitons
which are asymmetric.

We take velocities v1 = 0.8, v2 = −0.6 and initial phases p1 = −15, p2 = 15, which
describes two solitons propagating with both different velocities and different directions as
well. The problem is considered in the space-time domain (x, t) ∈ [−60, 60] × [0, 50], and
is simulated by the scheme (13)–(14) with m = 2 under the mesh division h = 0.4, τ = 0.05.
The 2D pictures of the waves for |ψ(x, t)| and ϕ(x, t) are shown in figures 9 and 10. And the
error of charge is exhibited on the right side of figure 8. From the figures, we can discover that
two solitons are merged into a larger one about t = 20, and some soliton-like waves brought
out after collision, however, the collision is quite elastic. Above all, the charge is conserved
exactly.

5. Conclusions and remarks

We have discussed a family of symplectic approximation for the KGS which is widely applied
to describe the interaction between the complex neutron field and real neutral field in quantum
mechanics. The following conclusions can be discovered from the above theoretical analysis
and numerical examples.
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The symplectic approximation can keep exactly the symplectic geometric structure of
the original Hamiltonian system. They can simulate various solitons during a long period
provided that the homogeneous or periodic boundary conditions are well satisfied all along.
However, the solitary waves we consider in the numerical examples are almost hyperbolic
sine wave. The spatial domain [−L,L] must be adequately large for large time T to meet the
homogeneous boundary conditions. Unfortunately, the spatial domain cannot be too large for
the limitation of the size of memory and the spatial step size. The symplectic approximation
we construct can preserve the charge exactly for the KGS. They cannot preserve the energy
because the Hamiltonian function of the KGS is of degree 3. Fortunately, its residual is
small, and takes on quasi-periodic fluctuation sometimes. They give an accurate plane-wave
solution for the KGS. Moreover, the numerical solutions convergent to the exact solutions
with O(τ 2 + h2m). The symplectic approximation is efficient, accurate, unconditionally stable
and can easily be generalized to 2D and 3D cases as well.
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